Correlation, Network and Multifractal Analysis of Global Financial Indices
نویسنده
چکیده
We apply RMT, Network and MF-DFA methods to investigate correlation, network and multifractal properties of 20 global financial indices. We compare results before and during the financial crisis of 2008 respectively. We find that the network method gives more useful information about the formation of clusters as compared to results obtained from eigenvectors corresponding to second largest eigenvalue and these sectors are formed on the basis of geographical location of indices. At threshold 0.6, indices corresponding to Americas, Europe and Asia/Pacific disconnect and form different clusters before the crisis but during the crisis, indices corresponding to Americas and Europe are combined together to form a cluster while the Asia/Pacific indices forms another cluster. By further increasing the value of threshold to 0.9, European countries France, Germany and UK constitute the most tightly linked markets. We study multifractal properties of global financial indices and find that financial indices corresponding to Americas and Europe almost lie in the same range of degree of multifractality as compared to other indices. India, South Korea, Hong Kong are found to be near the degree of multifractality of indices corresponding to Americas and Europe. A large variation in the degree of multifractality in Egypt, Indonesia, Malaysia, Taiwan and Singapore may be a reason that when we increase the threshold in financial network these countries first start getting disconnected at low threshold from the correlation network of financial indices. We fit Binomial Multifractal Model (BMFM) to these financial markets. PACS numbers: 89.65.Gh, 89.65.-s, 89.75.-k
منابع مشابه
Multiscale multifractal DCCA and complexity behaviors of return intervals for Potts price model
To investigate the characteristics of extreme events in financial markets and the corresponding return intervals among these events, we use a Potts dynamic system to construct a random financial time series model of the attitudes of market traders. We use multiscale multifractal detrended cross-correlation analysis (MM-DCCA) and Lempel–Ziv complexity (LZC) perform numerical research of the retu...
متن کاملMultifractal properties of price change and volume change of stock market indices
We study auto-correlations and cross-correlations of daily price changes and daily volume changes of thirteen global stock market indices, using multifractal detrended fluctuation analysis (MF-DFA) and multifractal detrended cross-correlation analysis (MF-DXA). We find rather distinct multifractal behavior of price and volume changes. Our results indicate that the time series of price changes a...
متن کاملEvidence of Multifractality from Emerging European Stock Markets
We test for the presence of multifractality in the daily returns of the three most important stock market indices from Central and Eastern Europe, Czech PX, Hungarian BUX and Polish WIG using the Empirical Mode Decomposition based Multifractal Detrended Fluctuation Analysis. We found that the global Hurst coefficient varies with the q coefficient and that there is multifractality evidenced thro...
متن کاملThe components of empirical multifractality in financial returns
We perform a systematic investigation on the components of the empirical multifractality of financial returns using the daily data of Dow Jones Industrial Average from 26 May 1896 to 27 April 2007 as an example. The temporal structure and fat-tailed distribution of the returns are considered as possible influence factors. The multifractal spectrum of the original return series is compared with ...
متن کاملMultifractal cross-correlation spectra analysis on Chinese stock markets
In this paper, the long-range cross-correlation of Chinese stock indices is systematically studied. The multifractal detrended cross-correlation analysis (MF-DXA) appears to be one of the most effective methods in detecting long-range cross-correlation of two non-stationary variables. The Legendre spectrum and the large deviations spectrum are extended to the cross-correlation case, so as to pr...
متن کامل